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Abstract

Many web services aim to track clients as a basis

for analyzing their behavior and providing personalized

services. Despite much debate regarding the collection

of client information, there have been few quantitative

studies that analyze the effectiveness of host-tracking

and the associated privacy risks.

In this paper, we perform a large-scale study to quan-

tify the amount of information revealed by common host

identifiers. We analyze month-long anonymized datasets

collected by the Hotmail web-mail service and the Bing

search engine, which include millions of hosts across the

global IP address space. In this setting, we compare the

use of multiple identifiers, including browser informa-

tion, IP addresses, cookies, and user login IDs.

We further demonstrate the privacy and security im-

plications of host-tracking in two contexts. In the first,

we study the causes of cookie churn in web services, and

show that many returning users can still be tracked even

if they clear cookies or utilize private browsing. In the

second, we show that host-tracking can be leveraged to

improve security. Specifically, by aggregating informa-

tion across hosts, we uncover a stealthy malicious attack

associated with over 75,000 bot accounts that forward

cookies to distributed locations.

∗This work was done while Ting-Fang was an intern at Microsoft

Research.
†Martı́n Abadi is also affiliated with the University of California,

Santa Cruz.

1 Introduction

It is in the interest of web services and ISPs to track

the mobility and usage patterns of client hosts. This

tracking allows them to understand user behavior for

supporting applications such as product suggestions, tar-

geted advertising, and online fraud detection. How-

ever, clients may not wish that their activities be tracked,

and can intentionally remove stored browser cookies or

choose not to perform user logins. The growing aware-

ness of privacy concerns is exemplified by the recent

“do-not-track” initiative from the Federal Trade Com-

mission [15], which outlines guidelines to which service

providers must adhere in the collection and distribution

of client information.

Several works aim to improve the accuracy of host-

tracking by collecting detailed host information, such

as installed browser plug-ins and system fonts [20, 31]

or packet-level information that reveals subtle hardware

differences [28]. By comparison, few studies exist

on the effectiveness and privacy implications of host-

tracking. Previous work tends to be qualitative in na-

ture [29, 30] or limited to a single identifier [20].

In this paper, we attempt to facilitate the debate re-

garding host-tracking by performing a large-scale study

to quantify the amount of identifying information re-

vealed by common identifiers. Such analysis is criti-

cal to both service providers and end users. For ex-

ample, service providers can determine where existing

identifiers are insufficient and more sophisticated meth-

ods may be preferred. Users who do not wish to be

tracked can learn the circumstances in which they can

be identified accurately, so that they can take effective

measures to protect privacy. Our analysis is based on



month-long anonymized datasets from the Hotmail web-

mail service and the Bing search engine, including hun-

dreds of millions of users across the global Internet IP

address space. By characterizing hosts’ activities across

time using “binding windows”, we show that common

identifiers allow us to track hosts with high accuracy.

We further consider cases where users take initiatives

to preserve privacy, e.g., by clearing cookies or switch-

ing to private browsing mode. Specifically, we analyze

“one-time” cookies that do not return again in subse-

quent web requests, a phenomenon known as cookie

churn. These cookies appear to be anonymous. How-

ever, by applying our host-tracking results, we show that

a surprisingly large fraction can be recognized as be-

longing to returning users.

In addition to its privacy implications, we demon-

strate that host-tracking can also be applied to improve

security. We examine the mobility patterns of hosts trav-

eling across multiple IP ranges, and establish normal

user mobility profiles from aggregate host activities. In

doing so, we are able to analyze unusual activities, e.g.,

the use of anonymous routing networks, and develop

methods to detect attacks. In particular, our study uncov-

ers previously unknown suspicious cookie-forwarding

activities, which may have been adopted by attackers to

evade spamming detection.

The key findings of this paper include:

• We show that 60%-70% of HTTP user-agent
strings can accurately identify hosts in our datasets.

When augmented with coarse-grained IP prefix in-

formation, the accuracy can be improved to 80%,

similar to that obtained with cookies. User-agent

strings combinedwith IP addresses have an entropy

of 20.29 bits—higher than that of browser plug-ins,

screen resolution, timezone, and system fonts com-

bined [20].

• Applying our results to study cookie churn, we find
that a service provider can recognize and track 88%

of the “one-time” cookies as corresponding to users

who later returned to the service. Among these

users, 33% made an effort to preserve their privacy,

either by clearing cookies through browser options

or utilizing private browsing mode.

• Employing general mobility patterns derived by
tracking hosts across network domains, we uncover

malicious behaviors where cookies are forwarded

from one IP address to distributed locations. In to-

tal, we identify over 75,000 bot Hotmail accounts

in this relatively stealthy attack that has not been

detected before.

Although our research relies on anonymized datasets

from Hotmail and Bing, the analyses that we describe

are a research effort only. Our goal is not to identify

or study specific individual activities, but rather to un-

derstand the patterns of the aggregated activities and to

explore their implications.

In the following, we first describe the identifiers that

we study and our host-tracking methodology in Sec-

tion 2, and present the evaluation of those identifiers in

Section 3. We investigate the privacy and security impli-

cations of host-tracking in the context of cookie churn in

Section 4 and of host mobility in Section 5. Finally, we

describe related work in Section 6 and conclude in Sec-

tion 7.

2 Exploring Common Identifiers

Given a log of application-level events collected over

time, such as requests directed to a web server or user

logins to a service, our goal is to quantify the amount

of host-identifying information that is captured in iden-

tifiers within the log. Specifically, for an identifier I ,

which may take on a finite set FI = {f1, f2, . . . , fn} of
possible values (called fingerprints), we are interested in

whether a fingerprint fi uniquely corresponds to a single

host, among all hosts involved in the log. As we consider

only client hosts in our scenario, we use clients or hosts

interchangeably throughout the paper.

We assume the perspective of a passive observer of

identifiers within application-level events. The common

identifiers explored in this work include 1) user-agent

string (UA), 2) IP address, 3) browser cookie, and 4)

user login ID. We choose these identifiers because they

are not particular to our datasets, and are available in a

wide variety of service logs.

2.1 Host­tracking Graph

Our host-tracking approach attempts to infer the pres-

ence of a host at an IP address during a certain time in-

terval. Upon observing a fingerprint f (and only f ) that

appears at an IP address A over a time interval ∆t, we

can infer a “binding window” for f . Events occurring

within ∆t at A can then be attributed to the host corre-

sponding to f . (Hosts behind NATs/proxies can compli-

cate matters; we quantify the occurrence of such hosts

in our data in Section 3.3.)

Figure 1 illustrates how we infer the binding win-

dows. In this example, user-agent strings (UA) are the

identifiers, and the events are queries to a web search

engine. A fingerprint UA1 appears in two consecutive



Figure 1. Binding windows identified on one

IP.

Figure 2. Example of a host­tracking graph.

Bars with different patterns denote binding

windows corresponding to different finger­
prints.

search queries at time t1 and t2, followed by queries at

time t3, t4, and t5 with a different fingerprintUA2. Thus

we can identify binding windows corresponding to two

different “hosts” on this IP: one spanning the time range

[t1, t2], and another spanning [t3, t5]. Having exam-

ined all search query events, we can construct a host-

tracking graph as in Figure 2. Note that a fingerprint

may be associated with multiple binding windows (since

the host may not be up all the time) and across different

IP addresses (e.g., because of DHCP). We refer to the

host-tracking graph that represents hosts by identifier I

as GI .

A similar concept of host-tracking graph was also

used by HostTracker [38] to support Internet account-

ability. HostTracker groups together user login IDs that

are likely to be associated with the same host, e.g., fam-

ily members that share a computer at home. It also filters

events related to bots and large proxies. In contrast to

this previous work, we make a broader use of the host-

tracking graph (with a variety of common identifiers),

and we apply host-tracking to the cookie-churn study (in

Section 4) and the host-mobility analysis (in Section 5).

2.2 Datasets

The data for our study includes a month-long user lo-

gin trace collected by the Hotmail web-mail service in

August 2010. The trace contains coarse-grained infor-

mation about the OS and browser type (e.g., Windows,

Mozilla), the IP address fromwhich the login was made,

the time of the login event, and the anonymized user ID.

In the following, we refer to this as theWebmail dataset.

We also obtained a month-long dataset consisting of

search query events directed to the Bing search engine

in August 2010. This data includes the fine-grained

user-agent string from the HTTP header (anonymized

via hashing), the IP address from which the query was

issued, the time of the query, the anonymized cookie

ID assigned by the search engine, and the date that the

cookie ID was created. Specifically, the anonymized

cookie ID is a persistent identifier that does not change

over time, if users do not clear cookies or use private

browsing. We refer to this as the Search dataset. As part

of the processing performed by the Bing search engine,

events generated by known bots are filtered in advance.

To validate our client-tracking approach, we lever-

aged a month-long sampled log of Windows Update

events, also from August 2010. This data contains the

time at which the update was performed, the IP address,

and the anonymized hardware ID that is unique to the

host. This is the Validation dataset.

Table 1 shows the fields and the total number of

unique IPs observed in each dataset. All three datasets

include tens to hundreds of millions of IP addresses,

spanning a large IP address space.

The published privacy policies for Hotmail, Bing,

and Windows Update address the storage, use, sharing,

and retention of data collected in the course of the oper-

ation of these services. In particular, they indicate that

Microsoft may employ this data for analyzing trends and

for operating and improving its products and services,

as we aim to do with this work. Since the datasets are

sensitive, they are not publically available for further re-

search.

2.3 Validation and Metrics

Without ground truth for the host-IP mappings, we

evaluate a host-tracking graphGI by overlapping it with

theValidation dataset. If a fingerprint is able to correctly



Dataset User-agent information IP address Timestamp ID Unique IP addresses

Webmail OS and browser type Yes Yes User ID 308 million

Search User-agent string (UA) Yes Yes Cookie ID 131 million

Validation N/A Yes Yes Hardware ID 74 million

Table 1. Fields in each dataset.

track a host, its bindings should overlap only with Win-

dows Update events associated with a single hardware

ID. Conversely, a hardware ID is also expected to over-

lap with bindings associated with only one fingerprint.

We quantify the accuracy of an identifier using pre-

cision and recall. Let hidcount(f) denote the number
of hardware IDs to which a fingerprint f corresponds,

and fpcount(m) the number of fingerprints to which a
hardware ID m corresponds. Precision is defined as the

percentage of fingerprints that correspond to one host

(i.e., one hardware ID), while recall is the percentage of

hosts that correspond to one fingerprint.

PrecisionI =
| {f : hidcount(f) = 1, f ∈ FI} |

| FI |

RecallI =
| {m : fpcount(m) = 1, m ∈ MI} |

| MI |

FI is the finite set of values that identifier I takes in

our dataset, i.e., the fingerprints (after some initial filter-

ing, as described below). MI is the set of hardware IDs

that overlap with the host-tracking graph GI . Roughly

speaking, precision quantifies how accurate an identifier

is at representing a host. Recall quantifies how well an

identifier is able to track the events associated with the

corresponding host in a log.

We also measure the entropy of an identifier, HI ,

which is the amount of information identifier I contains

that can distinguish hosts. The entropy is defined as

HI = −
∑

f∈FI

Pr(f) log2(Pr(f))

where Pr(f) is the probability of observing fingerprint
f in the application log. A higher entropy indicates a

smaller probability that any two clients are associated

with the same fingerprint.

In our validation, we consider only those fingerprints

that overlap with more than one Windows Update event,

and only those hardware IDs that overlap with more than

one application-level event pertaining to our identifiers.

These restrictions allow us to focus on the portion of

data that we can validate, though they can be biased to

those clients that access the services consistently (i.e.,

multiple times and with the same identifiers). Similarly,

because of the datasets available to us, our study is based

on clients of Microsoft services. We acknowledge that

any dataset will be incomplete and possibly biased.

3 Client-Tracking Results

In this section, we construct host-tracking graphs us-

ing the common identifiers user-agent string (UA), IP

address, cookie ID, and user login ID, and evaluate

their precision and recall. In particular, we explore the

distinguishing power of UA by examining the browser

anonymity sets. We also measure the impact of prox-

ies and NATs in our study in Section 3.3, and describe

the increased accuracy and confidence of tracking stable

hosts in Appendix A.

Our analysis focuses on host-tracking within each

network domain, derived using the BGP prefix entries

obtained from RouteViews [9]. We investigate the oc-

currences of identifiers at multiple network locations in

Section 5, in which we also study the security implica-

tions of host-tracking.

3.1 Precision and Recall

Table 2 presents our results on host-tracking. Af-

ter overlapping the Validation dataset with the host-

tracking graphs, the number of unique fingerprints and

hardware IDs included in our evaluation is still large—

on the order of millions.

Several observations are evident from Table 2. First,

browser information (UA) alone can identify hosts quite

well. Its 62.01% precision is perhaps surprising, as UA

strings are commonly regarded as providing insufficient

information to reveal host identities. Second, a com-

bination of UA with the IP address (i.e., fingerprinting

hosts by distinct (UA, IP) pairs) can boost the precision

up to 80.62%. In fact, combining UA with only the IP

prefix is sufficient to achieve approximately the same re-

sult as with UA+IP. This suggests that anonymization
techniques that store the IP prefix may still retain dis-

tinguishing information. Third, cookie IDs offer only

slightly better precision and recall than UA+IP. The
inaccuracies of cookie IDs can be partly attributed to

cookie churn, a phenomenon we study in more detail

in Section 4.



Identifier I Precision (%) Recall (%) Fingerprint count Hardware ID count

UA 62.01% 72.11% 254,762 3,073,690

UA, IP address 80.62% 68.84% 1,685,416 1,771,907

UA, /24 IP prefix 79.33% 69.43% 1,652,546 1,772,104

Cookie ID 82.35% 68.64% 1,340,635 1,375,074

Cookie ID (with HostTracker) 79.74% 99.13% 713,110 1,001,450

User ID (with HostTracker) 92.82% 93.51% 4,608,980 4,820,116

Table 2. Common identifiers in host­tracking, evaluated using the Validation dataset.

As another method to make use of the identifiers,

we also apply HostTracker [38] to the cookie IDs and

user IDs from our Search andWebmail datasets, respec-

tively. In the former case, the clients are now tracked

by a group of correlated cookies, e.g., those belonging

to two browsers running on a machine in parallel. In

the latter case, user login IDs that frequently appear to-

gether, e.g., family members that share a computer at

home, are used to track clients. We find user IDs achiev-

ing high precision and recall (over 92%), demonstrating

that they are strongly tied to individual hosts.

Since HostTracker yields relatively high precision

and recall with user IDs, we have also evaluated the

other identifiers against user IDs (instead of hardware

IDs). Even though hardware IDs and user IDs overlap

with different portions of the datasets, we obtain results

consistent with those of Table 2.

To summarize, we show that common identifiers can

track hosts reasonably well, particularly when they are

used in combination.

3.2 Browser Anonymity Set

Our evaluation suggests that a large fraction of

browsers provide enough information to fingerprint

hosts within each network domain. In this sec-

tion, we examine in detail the anonymity set of

browser fingerprints, defined as the set of hard-

ware IDs that share the same fingerprint. Even

though 62% of UAs map to unique hosts, popular

UA strings still have large anonymity sets, i.e., ad-

ditional examination shows that the most common

fingerprint, Mozilla/4.0(compatible;MSIE6.

0;WindowsNT5.1;SV1), corresponds to 124,355

(4.05%) of the hardware IDs that overlap with the UA

host-tracking graph.

Figure 3 compares the size of the anonymity sets for

UA and UA+IP. We find 98.92% of the UA+IP finger-
prints to be relatively rare, with fewer than five hardware

IDs, while this holds for only 89.69% of the UA finger-

prints.

To quantify the amount of identifying information
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provided by browser fingerprints, we calculate their en-

tropy. In our data, UA has an entropy of 11.59 bits, while

the entropy of UA+IP is 20.29 bits. A study performed
by Eckersley et al. [20] probed the remote client for

installed plug-ins, screen resolution, timezone, system

fonts, and user-agent strings, which altogether yielded

an entropy of 18.1 bits. While this suggests that their de-

tailed information provides more distinguishing power

than UA alone, it is interesting to observe that such in-

formation may be less distinguishing than simply com-

bining UA and IP address.

These results confirm our finding that UA strings aug-

mented with IP addresses can identify hosts well. How-

ever, popular UA strings still have large anonymity sets.

Changing the default UA string to one that corresponds

to a popular browser version may hence allow a client to

become less distinguishable.

3.3 Impacts of Proxies and NATs

Among the common identifiers we explored, none of

them performs perfectly. Aside from their inherent am-

biguity (e.g., some UAs are more common than others,

cookies can be removed), proxies and NATs introduce



fundamental difficulties in tracking hosts. The ability to

detect and measure them allows us to understand pre-

cisely where such practical limitations will apply.

We first quantify the prevalence of large proxies

and NATs that are typically configured by ISPs or en-

terprises. To do so, we examine “hosts” that corre-

spond to a large number of user login IDs or cookie

IDs. A small fraction of IP addresses in our datasets—

31,874 and 2,151 from theWebmail and Search dataset,

respectively—is each associated with more than 5,000

unique login IDs and cookie IDs. These are likely large

proxies and we filter them in our evaluation.

Next, we examine small NAT devices that are often

used by home networks. In this case, since it is rela-

tively rare for a client to be running multiple operating

systems in parallel, we leverage the coarse-grained OS

type and IP address recorded for each user login event in

the Webmail dataset. The majority (80.31%) of our lo-

gin ID fingerprints are associated with only one unique

user ID. When we observe multiple OS types, all from

the same IP address, it indicates that the “host” may ac-

tually be a NAT device that masks multiple clients.

From this experiment, we find 10.60% hosts likely to

be NATs. This number is a lower bound, since we cannot

distinguish clients that are running the same OS behind

a NAT device. Table 3 shows that while the large major-

ity of NATed hosts include multiple Microsoft Windows

OSes, hand-held devices also comprise a large fraction

(about 16%). With the increasing popularity of multiple

home devices and smart phones, we expect the percent-

age of NATs to grow further.

OS Types NAT hosts (%)

Multiple Windows 81.32%

Windows and Hand-held device 15.62%

Windows and Mac OS/Unix 2.19%

Hand-held and Mac OS/Unix 0.55%

Windows, Hand-held, and Mac OS/Unix 0.31%

Multiple Mac OS/Unix 0.01%

Multiple Hand-held devices 0.01%

Table 3. Breakdown of the OS types found

to be associated with hosts behind NATs.

4 Application: Cookie Churn Study

As the primary method for web sites to track return-

ing users without requiring login-based authentication,

browser cookies play an important role in customizing

web services and maintaining user statistics. However,

as shown in Section 3, using cookie IDs as client fin-

gerprints can be unreliable. In particular, they have a

relatively low recall rate—32% of the hardware IDs in

our evaluation cannot be completely tracked by cookies.

A main source of the low recall rate is cookie churn,

which we define as the phenomenon of cookies appear-

ing at least once but not appearing again in subsequent

web requests received by a server (within some obser-

vation time window). For service providers, being able

to track hosts will allow them to quantify the underly-

ing causes behind the cookie-churn phenomenon. In

this section, we measure and analyze cookie churn in

the Search dataset. (Among the datasets available to us,

it is the only one that contains cookie IDs.) By apply-

ing our host-tracking methodology, we show that some

client users may still be identified despite cookie churn.

4.1 Cookie Churn Measurement

Among cookie IDs that appear on the first day of our

Search dataset, the rate of cookie churn, i.e., the frac-

tion of cookie IDs that never returned again within our

month-long observation, is 47.86%. On average, the

daily cookie churn rate is around 45% across month-

long sliding windows.

Furthermore, 81.98% of the new cookie IDs that are

born on the first day of the Search dataset never returned

within the month. For all cookie IDs observed on the

first day of the month, Figure 4 shows cumulative dis-

tributions of the date that old and new cookies appear a

second time. The churn rate of new cookies is signifi-

cantly higher than that of old cookies—a difference of

more than 40%.

4.2 Possible Reasons for Churn

Clearly, cookie churn can result from users quitting

the service. As shown in Figure 4, engaged users that

access the service multiple times (with old cookies) are

more likely to return than new users.

Another reason for cookie churn is the removal of

cookies from the client browser. This removal can hap-

pen in several cases, including when users manually

clear cookies, when they set their browsers to automati-

cally clear cookies on exit, or when users switch into or

out of private browsing mode. Supported by all major

web browsers today, private browsing takes a user’s ac-

tivities off records by removing caches, history, and in

particular, cookies that are set during private mode.

To study how private browsing mode affects the

cookie events observed by web services, we examine
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Figure 4. For cookie IDs observed on the first day of the month, the cumulative distribution of

the date that old and new cookies appear again in our dataset.

Cookie Set Cookie Accessed Firefox Safari Chrome IE

Public Private No Yes No No

Private Same private session Yes Yes Yes Yes

Private Different private session No No No No

Private Public No No No No

Table 4. Accessibility of cookies in different browsing modes.

four of the most popular browsers in use today: Firefox

(version 3.6.11), Safari (version 5.0.2), Chrome (version

7.0.517.41), and Internet Explorer (version 8.0). Table 4

shows, for the browsing mode under which a cookie is

set (the first column), whether the same cookie can be

accessed under another browsing mode (the second col-

umn). In all cases, a cookie set in private mode can be

accessed repeatedly in the same private browsing ses-

sion, but not across different private browsing sessions.

No cookies set in private mode can be accessed in pub-

lic mode. Safari is the only browser that allows private

mode to access cookies set in public mode.

In the next subsection, we perform fine-grained clas-

sification to quantify the above possible causes of cookie

churn and characterize the corresponding users.

4.3 Understanding Cookie Churn

Applying the host-tracking results, we analyze

cookie churn by identifying cookies that are associated

with the same client host. In Section 3.1, we show

that the host-tracking graphGUID derived from user lo-

gin IDs (with HostTracker) achieved over 92% precision

and recall in tracking clients, which are represented by

hardware IDs from the Validation dataset. Thus we use

the hosts defined in GUID to serve as ground truth for

studying cookie churn. By overlapping GUID with the

Search dataset, we consider cookies whose query events

fall into binding windows associated with the same host

as corresponding to the same user (since user activity

roughly approximates host activity).

We focus on studying new cookie churn, as it is more

significant than that of old cookies (see Figure 4). We

refer to the set of “one-time” cookie IDs (CIDs) that

are born on the first day but do not return again in our

dataset as the churned new cookie IDs. In total, there

are 437,914 users (or hosts) that overlap with 847,196

churned new CIDs in the Search data. The number of

hosts is only about half of the number of churned cook-

ies IDs. We investigate the four cases that result in new

cookie churn, as illustrated in Figure 5, where the break-

down of users belonging to each category is shown in

Table 5. We elaborate on each of these cases separately

below.

4.3.1 Case 1: Non-Returning Users

If a CID overlaps with one of host h’s binding windows

at time t, but no other CIDs overlap h’s bindings from

time t onwards, we consider this as corresponding to a

user who does not return to the service (Figure 5(a)).



Case 1 Case 2 Case 3 Case 4

Number of users 101,427 77,120 67,310 192,057

Percentage of users (%) 23.16% 17.61% 15.37% 43.86%

Number of churned new CIDs 101,427 77,147 123,757 544,865

Percentage of churned new CIDs (%) 11.97% 9.12% 14.60% 64.31%

Table 5. Breakdown of the churned new cookie IDs into four categories of users.

(a) Case 1: User left the service.

(b) Case 2: User clears cookies.

(c) Case 3: Private browsing mode (one UA).

Case 4: Multiple browsers (multiple UAs).

Figure 5. Four cases of cookie churn. C1

is the churned new cookie ID. Horizontal

bars denote binding windows for a “host”
defined by user IDs.

We find that this case accounts for only 11.97% of the

churned new CIDs. Thus, despite the high cookie churn

rate, the majority (88.03%) of the churned new cookie

IDs correspond to returning users who might still be

tracked. The behaviors of the non-returning users are

examined in detail in Appendix B.

4.3.2 Case 2: Users that Clear Cookies

Cookie churn can also result from users intentionally re-

moving cookies. In this case, a host h’s bindings should

overlap with CIDs generated consecutively in time (Fig-

ure 5(b)). Each CID may be associated with multiple

queries that typically belong to a session. Among hosts

with new cookie churn, we find 77,120 (17.61%) in

this category. Since we observe only cookies issued by

the Bing search engine, we cannot distinguish between

users who clear all cookies and those who selectively

clear cookies from certain domains.

To find whether users clear cookies on exiting

browsers, we examine the time intervals between con-

secutive queries associated with the same CID, and com-

pare with those between consecutive queries associated
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Figure 6. Distributions of query intervals.

with different CIDs. Figure 6 shows that the former is

distinctly smaller, with 75% of them below 10 minutes

and hence likely to belong to one session. By contrast,

90% of the query intervals between different CIDs are

larger than 8 hours. This suggests that most users clear

cookies per session, e.g., when they close the browser

window.

We also find a small fraction (3.85%) of users whose

cookies are cleared per query, i.e., each of their queries

is associated with a different CID. These might be users

who take extreme measures to clear cookies for each

query to preserve privacy. However, such patterns can

become a distinctive feature that makes tracking easier,

despite the user’s intention of remaining anonymous.

4.3.3 Case 3: Users with In-Private BrowsingMode

Another reason for cookie churn is the use of the

browser’s private browsing mode. As illustrated in Fig-

ure 5(c), upon entering privatemode, the old cookie (C2)

set under public mode is replaced by a new cookie (C3).

Upon exiting the private mode, the old cookie (C2) will

continue to be used by the same user.

We focus on the hosts whose cookies appear inter-

leaved in their binding windows, where an old cookie

continues to appear after the user submit queries with

a newer cookie. Since entering private browsing mode

does not change the browser used by the host, we iden-

tify those associated with a single UA string as users



who utilize private browsing mode, and 15.37% of users

belong to this category.

Together with case 2, there are in total around 33%—

a non-trivial fraction—of users who would like to pre-

serve privacy by either clearing cookies or entering pri-

vate browsing mode. These users may still be tracked

when service providers combine the host-tracking re-

sults from other identifiers (e.g., login IDs) with cookie

data.

4.3.4 Case 4: Users with Multiple Browsers

For the remaining users, we observe multiple cookies

co-existing (as in Section 4.3.3), though they are as-

sociated with different UA strings. Upon examining

these users more closely, we find around 67% associated

with only two or three UAs. This observation suggests

that these cases correspond to single hosts with multiple

browsers or small home NATs. While it is more difficult

to track hosts behind NATs, we note that the anonymity

sets tend to be too small in such cases to protect user

privacy.

A small fraction of these cases (3%) are associated

with a large number of UA strings, which suggests that

they are large proxies or NATs. Routing traffic through

proxies thus provides better means for users who do not

wish to be tracked.

Summary We study the cookie-churn phenomenon

where privacy-aware users may clear cookies or switch

to private browsing. We show that by applying host-

tracking results with other identifiers, service providers

may still be able to identify a large fraction (88%) of the

“one-time”, churned new cookie IDs as corresponding

to users who return to the service.

5 Application: Host Mobility Study

In addition to switching between IP addresses within

the same network (for instance, because of DHCP), a

host may also travel across different IP ranges. This can

occur if the host is a mobile device, or when a virtual

private network (VPN) is used. Above, we track hosts

within each IP prefix range separately, though it is also

desirable to study clients that travel across domains, e.g.,

for traffic engineering or network management. More

importantly, host mobility patterns can benefit security

as well. We demonstrate this point by applying our host-

tracking results to detect abnormal and malicious activi-

ties.

To understand the mobile behavior of hosts at a large

scale, we make use of cookie IDs, since they are more

closely tied to specific devices than other identifiers we

studied in Section 3. We use the Search dataset for our

study. Among cookie IDs in this dataset, 7.9 million

appeared at more than one domain. While the major-

ity of these cross-domain activities are associated with

normal user travel patterns, there also exist unusual or

suspicious activities, for example, cookie forwarding of

the kind supported by CookieCooker [1].

In this section, we focus on detecting the following

two abnormal host mobility patterns:

• Some cookie IDs move quickly between multiple
domains, suggesting that they may not correspond

to hosts who travel physically. In particular, we

study those cookies that may be associated with

anonymous routing, such as Tor routing [37].

• During an investigation into suspicious user email
traffic that do not conform to the general host mo-

bility profile, we uncover a stealthy type of mali-

cious cookie-forwarding activity.

In the following, we first study patterns corresponding to

users traveling across domains in general. We then use

those patterns as baseline to identify abnormal activities.

5.1 Host Mobility Patterns

Our analysis yields a few key observations on general

host mobility patterns. First, as shown in Table 6, ASes

associated with cellular networks, i.e., Verizon Wire-

less and Carphone Warehouse Broadband Services, are

ranked among the top domains with the largest number

of traveling cookies. This fact reflects the proliferation

of smart phones with mobile Internet access. In total, we

find around 20% of the cookies among the top 500 AS

pairs to be associated with cellular networks (Verizon

Wireless, AT&T Wireless, Vodafone, Sprint, etc.).

AS pair # Cookies Affiliations

AS 17557, 45595 152871 Pakistan Telecom (PK)

AS 6167, 22394 70941 Verizon Wireless (US)

AS 13285, 43234 56600 Opal Telecom, Carphone

Warehouse Broadband (GB)

AS 4134, 4837 52520 ChinaNet (CN)

AS 8228, 15557 36812 Neuf Cegetel (FR)

Table 6. Top five AS pairs associated with

traveling cookies.



Second, we find traveling hosts to exhibit strong geo-

graphic locality. 83% of the cookies move between net-

works within the same country, and this number is even

higher for the U.S. (95.44%). The strong geographic lo-

cality pattern can also be observed among cookies that

travel across countries. Figure 7 shows the topology of

international host travel, also drawn from the top 500

AS pairs. The node “EU” in the figure represents multi-

regional networks in the European Union, which are not

exclusively part of any European country. The size of

each node in the figure is proportional to the number

of cookies that originated from that country or region.

The edges indicate the direction of travel. The figure

shows that host mobility is largely bi-directional, and

is commonly localized within the same general region

(e.g., Europe).
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Figure 7. The topology of host mobility by
country or region (e.g., “EU”), for top 500

AS pairs.

Third, a closer look at the AS topology of host mo-

bility in the U.S. shows the existence of “hub” ASes that

are connected to many smaller “leaf” ASes. The former

are commonly associated with DSL broadband Internet

services, while the latter include institutional and cor-

porate networks. This star topology could result from

clients’ commuting patterns between home and work.

Finally, in addition to the source and sink domains,

we are also interested in how far the hosts roam, i.e.,

how many ASes they travel through. Figure 8 plots the

distribution of the number of ASes traveled by each host,

with the Y-axis in log scale. The large majority (90%)

of cookies are associated with only two domains.

These observations, based on aggregate information

across the 7.9 million traveling hosts in the Search

dataset, reflect general mobility patterns at a large scale.

In the following, we investigate specific activities that

fall outside this norm, including those that may involve
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Figure 8. The distribution of the number of

ASes traveled by each CID. Y­axis is in log

scale.

suspicious behavior.

5.2 Identifying Virtual Client Travel

Although the majority of traveling cookies corre-

spond to physical host mobility, such as those associ-

ated with cellular networks, some switch between do-

mains faster than seemingly possible for physical travel.

Consecutively appearing from different ASes within a

matter of minutes, the rapid movement of these cook-

ies suggests the presence of some form of virtual client

travel.

5.2.1 VPN Traffic Patterns

For the large majority of hosts that travel rapidly across

only two or three domains, they likely have used VPNs

or proxies. Virtual private networks (VPNs) allow traf-

fic to be privately tunneled between two machines that

are not in the same subnet. Creating an overlay net-

work of clients that belong to the same organization,

they are commonly used to provide corporate resources

to remote employees. From the perspective of a web

server, a user connecting to her company network from

a DSL line at home can generate multiple requests with

the same cookie, though they appear from two domains.

Specifically, we find a total 960,885 (12%) mobile

cookies that travel between only two ASes, and that ap-

pear at the ASes consecutively within a short interval

(i.e., 10 minutes). We call such cookiesVPN-style cook-

ies. Table 7 lists the top five AS pairs with the highest

number of these cookies, which include institutional and

corporate networks, e.g., City University of New York,

NTT, and KDDI Corporation. VPN-style cookies com-



prise around 60% of all traveling cookies between a cor-

porate network and a DSL broadband service provider.

This observation indicates that VPNs can be a major ex-

planation for host mobility.

AS pair # Cookies Affiliations

AS 6389, 35985 13249 BellSouth,

One Ring Net. (US)

AS 702, 2856 8977 Verizon (US),

BTnet UK Reg. Net. (GB)

AS 7018, 31822 7878 AT&T, City Univ. N.Y. (US)

AS 174, 701 6630 Cogent, MCI Comm.(US)

AS 4713, 4716 5770 NTT Comm.,

KDDI Corp. (JP)

Table 7. Top AS pairs associated with VPN

cookies.

5.2.2 The Use of Anonymous Routing

Examining the tail of the distribution in Figure 8, we

also find a small fraction (0.02%) of cookies that mi-

grate across more than 10 different domains. Stopping

in each AS only for short durations, they do not return to

a previously visited domain. Focusing on this behavior,

we identify 309 cookies that travel across more than 10

ASes, and where the time between consecutive “jumps”

to different ASes is less than 10 minutes (which is the

default time to use a Tor circuit for new application con-

nections). Compared to the AS peering relationship in

Section 5.1, there does not appear to be any clear delin-

eation of geographical regions.

The top ASes in this case are dominated by cable net-

works, with the previously top cellular networks disap-

pearing completely from the list. Some university net-

works ranked significantly higher than before (AS 111,

associated with Boston University, is on the path of 9%

of these cookies). One explanation for the behavior of

these cookies is the use of anonymous routing systems,

such as Tor [37]. For a user that routes her traffic in this

manner, if her traffic exits from different nodes in the

mixing network, the same cookie may appear at differ-

ent domains.

We obtained a list of active Tor nodes [8], including,

for each node, its IP address, country, ISP, and whether

it is an exit node. Among the 309 wandering cookies,

60 of them traverse through at least one Tor node, and

142 of them traverse through at least one AS that is also

shared by a Tor node. We also examine ASes since some

Tor nodes may already be assigned different IPs at the

time of our lookup. Figure 9 plots the distribution of
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Figure 9. The percentage of Tor IPs or ASes

on the path of wandering cookies.

the percentage of Tor IP addresses or ASes that a cookie

traverses. All of the cookies spend at least 12% of their

time at a Tor IP address, with the maximum being 83%.

Using the Tor network hides the network origin of a

user, addressing one aspect of online anonymity. How-

ever, the use of cookies may still reveal user activity pat-

terns and potentially user network origins, e.g., if a user

does not clear cookies prior to using the Tor network.

To mitigate such privacy threats, users can install Tor-

button [7] to manage their identifying information, for

example.

5.3 Detecting Cookie­Forwarding Attacks

Based on the host mobility patterns derived from our

analysis, we launch an investigation into abnormal user

activities that include 28,208 unique user accounts, pro-

vided by the Hotmail web-mail service. These events

are sampled over a 24-hour window in November 2010.

In each event, a user submitted requests (e.g., check-

ing new emails, listing contacts) from an IP range that

was different from the one she used to log into her Hot-

mail account. One would imagine that this behavior can

be attributed to the use of cellular networks, VPNs, or

proxies. Surprisingly, we find many users exhibit quite

different traveling patterns than those we learned in Sec-

tions 5.1 and 5.2.

5.3.1 Detection Methodology

We find two distinct patterns in these events that differ

from those of general mobile hosts:

• One-third of the ASes associated with these events
are exclusively sinks or sources. This is in con-

trast to normal host mobility, where the direction



of travel is largely bi-directional. Table 8 lists the

dominant sink ASes.

• Among the AS pairs with the largest number of
these abnormal events, seven out of the top ten do

not appear at all among those associated with nor-

mal hosts. These AS pairs are listed in Table 9.

Sink AS # Cookies Location

AS 34285 308 Seville, Spain

AS 40430 201 Miami, FL, USA

AS 14141 192 Atlanta, GA, USA

AS 19318 189 Jersey City, NJ, USA

AS 19194 174 Unknown

(Satellite provider)

Table 8. Top ASes that are exclusively

sinks in the abnormal events.

AS Pair # Cookies Affiliations

AS 766, 34285 308 RedIRIS AS (EU),

SANDETEL (ES)

AS 30736, 25761 235 Easyspeedy Net. (DK),

Staminus Comm. (US)

AS 30736, 40430 201 Colo4jax (US)

AS 30736, 1421 198 WANSecurity (US)

AS 30736, 14141 192 WireSix (US)

AS 30736, 29761 192 OC3 Net. & Web Solu-

tions (US)

AS 30736, 19318 188 New Jersey Intl. Inter-

net Exchange (US)

Table 9. Top AS pairs related to abnormal

events.

Combining these two observations, we find that the

dominant sinks in Table 8 significantly overlap with the

sink ASes in Table 9. They share the common source AS

30736, located in Denmark. Upon examination, we find

that there is a single IP address generating login events

for a large number of users, who then submit subsequent

requests from multiple ASes in the U.S., violating the

geo-locality travel pattern observed in Figure 7 as well.

We find that the user login IDs associated with this

particular source IP address contain more suspicious

patterns. In particular, they are groups of bot-user ac-

counts all registered on the same day in November 2010,

with the same user age, location information (country,

state), and scripted naming patterns. Among the top five

dominantly sink ASes, four of them are used by these

bot groups to submit requests.

Sink AS # IP # Req. # Acct. Location

AS 14141 12 262 192 Atlanta, GA

AS 19194 10 225 174 Unknown

AS 19318 11 242 189 Jersey City, NJ

AS 40430 12 269 201 Miami, FL

AS 25761 14 324 235 Fullerton, CA

AS 1421 10 265 198 Bordentown, NJ

AS 29761 10 244 192 Los Angeles, CA

AS 30058 10 261 180 Woodstock, IL

AS 18779 10 246 180 San Francisco, CA

Table 10. Statistics for detected bot­user
groups.

By examining all the sink ASes with source AS

30736 in these events, we find a total of 9 bot-user

groups, corresponding to 9 sink ASes geographically

distributed over the U.S. The activities between some of

these ASes are subtle, and would not have been detected

without leveraging the normal host mobility patterns de-

scribed in Section 5.1.

5.3.2 Cookie-Forwarding Bot Users

Table 10 lists the statistics for the 9 detected bot-user

groups. Each of these groups includes around 190

users. A different /24 subnet is associated with each user

group that submit requests without explicit login activ-

ities from the same subnet. For each /24, the sink IP

rotates among 10 to 14 addresses.

From a more recent user login dataset collected by

Hotmail in January 2011, we find over 75,000 email

accounts associated with the suspicious source IP ad-

dress in Denmark, all exhibiting similar patterns to the 9

groups we discovered. Manual investigation by Hotmail

shows that these accounts were used by attackers for the

purpose of receiving and testing spam. After these ac-

counts are logged into from one machine (i.e., one IP ad-

dress), their cookies are forwarded to multiple locations

so that further requests can be submitted in a distributed

fashion during the validity period of the cookies, which

is 24 hours in our case.

There are at least two possible explanations for such

malicious cookie-forwarding activities. First, some

web-mail providers identify an account as suspicious if

it performs logins from multiple geographic locations

within a short time interval. By forwarding cookies to

other locations through a private communication chan-

nel, attackers can successfully offload the requests to

distributed hosts without them performing explicit user

logins, hence reducing the likelihood of detection. Sec-



ond, as a preparation step in launching session-hijacking

attacks on real user accounts (e.g., [6]), attackers may

be testing the effectiveness of forwarding cookies via

stealthy communication channels.

Although the user accounts we identified were all

newly created, it is possible that attackers can employ

hijacked cookies stolen from actual users and forward

them to botnet hosts in the future. Understanding nor-

mal host mobility patterns can help detect such stealthy

attacks.

6 Related Work

Many efforts on tracking hosts focus on identify-

ing specific hardware characteristics, such as radio fre-

quency [23, 34, 18] or driver [21]. Identifiers such

as network names or the IP addresses of frequently

accessed services also enable host fingerprinting [32].

However, these approaches require the observer to be in

close physical proximity to the target host.

Remote host fingerprinting can leverage packet-level

information to identify the differences in software sys-

tems [2, 4, 5] or hardware devices [28]. Other works

on tracking web clients require probing hosts’ system

configurations [20] or the installation order of browser

plug-ins [31]. Persistent browser cookies [3, 36] have

also been proposed; these systems store several copies

of a cookie in different locations and formats, so that

they cannot be removed by standard methods.

Compared with these efforts, our work focuses on

studying the effectiveness and implications of track-

ing hosts using existing identifiers, without requiring

new information or probes. Although the issue of pri-

vacy leakage has been repeatedly discussed, e.g., per-

sonally identifiable information in online social net-

works [29, 30], there has been limited study using large-

scale datasets. Our work uses month-long datasets from

a large search engine and a popular email provider to

quantify the amount of host-identifying information re-

vealed by a variety of common identifiers. To the best

of our knowledge, we are also the first to demonstrate

applications of host tracking to analyze cookie churn in

web services and to detect suspicious cookie-forwarding

activities.

Apart from its privacy implications, understanding

cookie churn is an important topic for estimating web

user population and personalization. Previous stud-

ies mostly rely on user surveys or active user par-

ticipation (e.g., by installing a software on user ma-

chines) [12, 11, 16, 14]. Their findings show that 30% to

40% of users clear cookies monthly. A separate study by

Yahoo! [13] find that 40% and 60% of users have empty

browser caches, so they probably have cleared cookies

as well. While our results are consistent with previous

findings, the approach we take requires neither user co-

operation nor special content setup.

Host mobility studies have been performed in the

context of wireless [17, 27, 22, 25], ad hoc [24, 26],

and cellular networks [19] to obtain more accurate de-

vice moving models or to predict user locations. Sim-

ler et al. [35] studied user mobility in terms of ses-

sion characteristics based on login events to a university

email server in order to generate synthetic traces. Re-

cent work [33] proposed a technique for classifying IP

addresses into home and travel categories to study host

travel and relocation patterns in the U.S. By studying

cross-domain cookies, our work focuses on normal host

mobility patterns that enable us to observe uncommon

phenomena and detect malicious activities.

7 Discussion and Conclusion

In this paper, we perform a large-scale exploration

of common identifiers and quantify the amount of host-

identifying information that they reveal. Using month-

long datasets fromHotmail and Bing, we show that com-

mon identifiers can help track hosts with high precision

and recall.

Our study also informs service providers of the

potential information leakage when they anonymize

datasets (e.g., replacing IP addresses with IP prefixes)

and release data to third-party collaborators or to the

public. For example, we show that hashes of browser

information (i.e., the anonymized UA strings) alone can

be quite revealing when examined in one network do-

main. Furthermore, coarse-grained IP prefixes achieve

similar host-tracking accuracy to that of precise IP ad-

dress information when they are combined with hashed

UA strings.

Our analysis suggests that users who do not wish to

be tracked should do much more than clear cookies. Un-

common behaviors such as clearing cookies for each re-

quest may instead distinguish a host from others who do

not do so. Users should take notice of their user-agent

strings (e.g., modify the default setting [10]), consider

the use of proxies, and possibly resort to sophisticated

techniques such as anonymous routing [37]. In some

cases, several of these techniques should be combined

to be effective, e.g., clearing cookies in addition to the

use of proxies or Tor.

Finally, despite its privacy implications, we demon-

strate the security benefit of host-tracking. Given the



growing concerns over account hijacking and session hi-

jacking, we expect host fingerprinting and tracking tech-

niques can help defend against such attacks in the future.
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Appendix

A Tracking Stable Hosts

In the presence of NATs, proxies, and dynamic IP

addresses, the mapping between a host and an IP ad-

dress can be extremely volatile. Service providers that

are interested in fingerprinting stable hosts may trade

coverage for accuracy. We show that the binding win-

dow length can serve as a confidence measure for this

purpose.

Intuitively, stable and active hosts should have longer

binding windows that make them easier to track than

hosts that appear infrequently or that change IP ad-

dresses often. Indeed, using UA+IP as an example, Fig-
ure 10(a) shows the increase in precision and recall with

longer binding windows.

However, as we impose increasingly strict require-

ments on the binding window length, the percentage of

fingerprints remaining decreases roughly proportionally,

as shown in Figure 10(b). Half of the fingerprints have

binding windows no longer than one week. We can thus

explore a tradeoff between accuracy and coverage of
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Figure 10. Binding length and accuracy
tradeoff.

tracking hosts using the binding window length as an

adjustable parameter. In particular, Figure 10 suggests

that using a binding window length of five days in prac-

tice can achieve both high precision and recall without

losing significant coverage.

B Non-returning Users

For those 101,427 “one-time” non-returning users

that were observed only on the first day of the Search

dataset we are interested in whether this is because they

stopped using the service or because they cannot be

tracked. We expect users who leave the service to be

less engaged than returning users. To test this hypoth-

esis, we examine the average number of queries sub-

mitted by each CID and the percentage of CIDs that

have clicked on the query results. We compare these

two statistics between the set of returning users and the

set of non-returning users. We consider only churned

new CIDs in this comparison. For example, if a return-

ing user has queries associated first with CID1 and later

with CID2, we consider the subset of queries that cor-

respond to CID1 only, as they represent first-time user

experience.

Table 11 shows that returning users indeed appear to



Non-returning users Returning users

Average number of queries per CID 4.7 7.0

Percentage of CIDs with clicks 60.73% 77.85%

Table 11. The query and click behaviors of returning and non­returning users from the first day
of the log.

be more engaged in the service, generating more queries

on average and are also more likely to make clicks.

Overall, 77.85% of the churned new CIDs that belong

to returning users have clicks, while only 60.73% of the

churned new CIDs from non-returning users have clicks.

We further examine, for each CID, the percentage of

search queries that resulted in clicks. For CIDs that be-

long to returning users, Figure 11 shows a larger per-

centage of queries have clicks than CIDs that belong

to non-returning users. Half of the CIDs associated

with returning users have clicks on 80% of their queries,

while half of those associated with non-returning users

have them on less than 50%.
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Figure 11. Cumulative distribution of the

fraction of queries per CID that resulted in
clicks.

Another question of interest is whether users stop us-

ing the service because they are less active and have in-

frequent online activities. To quantify the degree of ac-

tivity of the non-returning users, we measure the time

interval and the number of login events between the last

Bing search query and the last Hotmail login event that

fall within the host’s binding windows, shown in Fig-

ure 12. We find that though users in our data may have

left the search service, many of them have continued on-

line activities. More than 80% of these users are active

even after 25 days (Figure 12(a)), and around 60% of

them logged in more than 40 times (Figure 12(b)).

(a)

(b)

Figure 12. (a) The time between the last

Bing search query and last Hotmail login.
(b) The number of Hotmail logins after the

last Bing search query.


